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Chapter 1 Solution Techniques in Electrostatics and 
Magnetostatics 

1.1 MAXWELL’S EQUATIONS 
Modern electromagnetism is based on a set of four fundamental relations known as Maxwell’s 
equations. They are given below in Integral and Differential forms: 
                                     Integral form                               Differential form 
 

(1) Gauss’s law:          ∫ ⋅S sdr
r
D = Q = ∫

vol
vdvρ               ∇ $ D

r
 = ρv  

     (for electric fields)           

(2) Ampere’s law:      ∫ ⋅C dl
rr

H = Ic + Id = I                ∇× H
r

= J
r

+
t
D

∂
∂
r

    

      ( Ic  = conduction current  Id = displacement current= ∫ ∂
∂

s

dS
t
D .
r

) 

(3)  Faraday’s law:      ∫ ⋅C E l
rr

d  = - ∫ ⋅
∂
∂

S t
B sdr
r

             
t
BE

∂
∂

−=×∇
r

r
 

(4)  Gauss’s law:          ∫ ⋅S sdr
r
B = 0                                     ∇ $B

r
 = 0 

      (for magnetic fields) 

For harmonic variation of fields, ωj
t

=
∂
∂   and the Maxwell's equation will take the form given 

below:  
                                     Integral form                               Differential form 
 

(1) Gauss’s law:          ∫ ⋅S sdr
r
D = Q                ∇ $ D

r
 = ρv  

     (for electric fields)           

(2) Ampere’s law:      ∫ ⋅C dl
rr

H = Ic + Id = I               ∇× H
r

= 
t
DJ

∂
∂

+ = (σ+jωε) E 

 (3)  Faraday’s law:      ∫ ⋅C E l
rr

d  = - ∫ ⋅
∂
∂

S t
B sdr
r

             BjE ω−=×∇
r

 

(4)  Gauss’s law:          ∫ ⋅S sdr
r
B = 0                                     ∇ $B

r
 = 0 

      (for magnetic fields) 
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The charge-current continuity relation or simply as the charge continuity equation (for 
conservation of electric charge) is  

t
v

∂
∂

−=⋅∇
ρJ

r
   

In a static case none of the field quantities are function of time. Hence 0
t

=
∂
∂

. The 

Maxwell's equations reduce for the static case to the following form: 

•  ∇ $ D
r

 = ρv , 0E =×∇
r

   ( Electrostatics) 

• ∇ $B
r

 = 0, ∇× H
r

= J
r

   (Magnetostatics) 

1.2  POISSON’S AND LAPLACE’S EQUATIONS 
From the point form of Gauss's law, v .D ρ=∇      (1) 

The definition of D is   E  D ε=        (2) 

The gradient relationship is V-  E ∇=       (3) 
By the substitution of these two relations, we have     

V V)].[  E)  D ρεε =−∇∇=∇=∇ (.(.       

ε
ρv-  V =∇∇.   or 

ε
ρv2 -V =∇     (4)  

For a homogeneous medium,  is constant. 
Equation (4) is Poisson's equation.  
 
In Cartesian co-ordinates, 

zyx a
z
Va

y
Va

x
V  V

∂
∂

+
∂
∂

+
∂
∂

=∇     (5)  

and   
x

A 
x

A
 

x
AA zyx

∂
∂

+
∂

∂
+

∂
∂

=∇.      (6) 

Therefore,  









∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

=∇∇
z
V

zy
V

yx
V

x
  V.              

             2

2

2

2

2

2

z
V

y
V

x
V

∂
∂

+
∂
∂

+
∂
∂

=  
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ε
ρv

222
2 -  

z
v

y
v

x
vV =

∂
∂

+
∂
∂

+
∂
∂

=∇
222

  in Cartesian co-ordinates. 

 
 If 0v =ρ  indicating zero volume charge density but allowing point charges, line charge and 
surface charge to exist at singular locations.   
Then,  0V2 =∇         (7)  
This is Laplace’s equation. The ∇ 2 operation is called Laplacian of V. 
 
The Laplace's equation in Cartesian co-ordinates is 
 

0
z
V

y
V

x
VV 2

2

2

2

2

2
2 =

∂
∂

+
∂
∂

+
∂
∂

=∇                          

In other co-ordinates systems, the ∇ 2V is expressed by the relations below: 

2

2

2

2

2
2

z
VV1V1V

∂
∂

+







∂
∂

+







∂
∂

∂
∂

=∇
φρρ

ρ
ρρ

              Cylindrical co-ordinates 

      

2

2

222
2

2
2 V

sinr
1Vsin

sinr
1

r
Vr

rr
1V

φθθ
θ

θθ ∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

=∇    Spherical co-ordinates 

 
Example 1:   

Calculate the numerical values for V and ρv at a point P in free space if (a) V=
1x

4yz
2 +

 at 

P(1,2,3)  (b) V=5ρ2cos2Φ at P(ρ=3,Φ=π/3,z=2).  
 
Solution: 
For each case substitute the coordinates and find V.  Use appropriate formula for Ã2V. Then, 

differentiate it and evaluate 
ε
ρv-

 from
ε

ρv2 -V =∇ . Lastly, find ρv. 

(a) V=
11

324
+

×× =12 v 

  2

2

2

2

2

2
2

z
V

y
V

x
VV

∂
∂

+
∂
∂

+
∂
∂

=∇ = 







∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

z
V

zy
V

yx
V

x
 

  Differentiating twice and substituting values of x, y, z, we yield -12V2 =∇  
  ρv=12εo=12×8.854×10-12=106.25 pico-colombs/m3.  
 
(b) V= 5 × (3)2×cos (2π /3) = 22.5 volts 
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2

2

2

2

2
2

z
VV1V1V

∂
∂

+







∂
∂

+







∂
∂

∂
∂

=∇
φρρ

ρ
ρρ

 

  
( )

2

22

2

22

2

2

z
cos2(5cos2(51cos251    

∂
∂

+







∂

∂
+








∂

∂
∂
∂

=
)) φρ

φ
φρ

ρρ
φρ

ρ
ρρ

  

 
        =20 cos2φ - 20 cos2φ+0 = 0.  
Therefore ρv=0 
 
Example 2: (Rectangular Co-ordinates System)  
 
Consider that the potential V is a function of x only. 

The Laplace's equation reduces to 0
x
V

2

2

=
∂
∂

     (1)  

Since V is not a function of y or z the partial derivative can be changed to ordinary derivative.    

Integrating it, we get  A
dx
dV

=       (2)  

where A is a constant. 
 
Integrating again, V= Ax + B       (3) 
where B is another constant of integration. 
These constants are to be evaluated using boundary conditions. 
 
Let V=V1 at x=x1 and V=V2 at x=x2. 
From (3) V1 = A x1 + B and V2 = A x2 + B, solving them, we get  

 
21

21

xx
VVA

−
−

=   and
21

2112

xx
xVxV B

−
−

= . Substituting for A and B in (3) we get 

V=
( ) ( )

21

221

xx
x-xVx-xV

1

−
−

      (4) 

If the boundary conditions are V=0 at x=0 and V=Vo at x=d then A=Vo/d and B=0, now  

d
xVV o=           (5) 

In case of parallel plate capacitor of potential difference Vo and distance between plates d we 
can orient the plates such one is at x=0 and V=0 . 
Using (5), we can find V. 
 

From V find 
→

E = V- ∇ . Find 
→→

= ED ε . Find D at either capacitor plate. 
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D= Ds = DN aN, but DN=ρs. Hence the charge Q can be found by surface integration over 

capacitor plate. ∫=
s sdsQ ρ  . In the present case, 

d
xVV o= ,    E= x

o a
d
V- ˆ ,  x

o a
d
V-D ˆε= , Ds=

ox
D

=
= - x

o a
d
V ˆε  , xN aa ˆˆ =  

 

DN= s
o

d
V

ρε =−    and Q= ∫
s

o ds
d
V- ε

 = -
d
SVoε  where S = Surface area. 

∴Capacitance C=
oV

Q
=

d
Sε

. 

Note: if the field varies with y or z co-ordinate, the working will be similar to the above 
example where x is replaced by y or z. 
 
Example 3: (Cylindrical Co-ordinates System)  
Consider variation of field with respect to ρ only. 
The Laplace's equation is   

0V1
=








∂
∂

∂
∂

ρ
ρ

ρρ
 .  

Converting the partial derivative to normal derivative, we yield  

0
d
dV

d
d1

=







ρ

ρ
ρρ

.  

Since ρ is in the denominator exclude the solution ρ=0. 
 

Multiply by ρ, we get 0
d
dV

d
d

=







ρ

ρ
ρ

.  

Integrating it, we yield A
d
dV

=







ρ

ρ  and thus
ρρ
A

d
dV

=







.  

Integrating again, V= A ln ρ+B where A and B are constants of integration to be evaluated 
from boundary conditions. 
 
Consider two co-axial cylinders of length L and radius a, b respectively with a potential 
difference Vo between them. Let b>a.  V= Vo at ρ=a and V=0 at ρ=b.  

Then the solution is
( )
( )b/aln
b/lnVV o

ρ
= .     
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From this we find E, where ( ) ρρ
a

b/aln
1VE o ˆ=

r
 . 

DN(ρ=a)= ( )b/aln a
Voε

 and Q= ( )b/aln a
aL2Vo πε

 .  

Finally C= ( )b/aln
L2πε

 is value of capacitance of coaxial capacitor. 

 
Example 4: (Solution of Laplace's Equation by the Method of Separation of Variables or 
Product Solution) 
 
This method is used when the potential function depends on two or more variables.  
Let the potential be a function of x and y alone.  

Then Laplace's equation is 0
y
V

x
VV 2

2

2

2
2 =

∂
∂

+
∂
∂

=∇ .  

We assume a solution of form V=XY where X is a function of x alone and Y is a function of y 
alone.  

Then, 0
y
YX

x
XY 2

2

2

2

=
∂
∂

+
∂
∂

  

Because of independence of variables, we can use ordinary derivatives. 

0
dy

YdX
dx

XdY 2

2

2

2

=+ . Dividing throughout by XY, we yield 

0
dy

Yd
Y
1

dx
Xd

X
1

2

2

2

2

=+  or 2

2

2

2

dy
Yd

Y
1

dx
Xd

X
1

−=  

 
Since X is a function of x alone and Y is a function of y alone the above equality is valid only 
if both the terms are equal to same constant. 
 

2
2

2
2

2

2

dy
Yd

Y
1   and  

dx
Xd

X
1

αα =−=  where α2 is called separation constant. 

Now, we can rearrange the equations as  X
dx

Xd 2
2

2

α=   and Y-
dy

Yd 2
2

2

α= .   

By solving these equations we get result. There are many types of solutions.   
One solution is X= x-

2
x

1 ecec αα +  and Y= y-j
4

yj
3 ecec αα +  where c1 to c4 are constants to 

be evaluated from boundary conditions. 
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1.3 UNIQUENESS THEOREM 
Within a closed region a solution to Laplace's equation or to Poisson's equation for the 
potential function V is the only solution that satisfies potential specified over the boundaries 
of the region. 
 
Proof: 
Assume we have two solutions for Laplace's equation, V1 and V2. Therefore, 

( ) 0VV    . 0V  , 0V 21
2

2
2

1
2 =−∇∴=∇=∇  . 

 
Each of the above solutions must satisfy the boundary conditions. Let Vb be the potential on 
boundary. Then V1b, value of V1 on boundary and V2b, value of V2 on boundary must be equal 
to Vb, i.e. V1b= V2b= Vb or V1b- V2b=0. 
 
Consider the vector identity where V is scalar and D is vector. 

( )V.DDVDV ∇+





 .∇≡






.∇

→→→

 

Consider the scalar (V1-V2) and the vector ( )21 V-V∇ . Then the equation will be 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )212121212121 V-V.V-VV-V.V-VV-VV-V ∇∇+∇∇≡∇.∇  
 
Integrate throughout the volume enclosed by the boundary surfaces specified, we yield 
 

( ) ( )[ ] ( ) ( )[ ] ( )∫∫∫ ∇+∇∇≡∇.∇
vol

2
21

vol
2121

vol
2121 dvV-VdvV-V.V-VdvV-VV-V ][ . 

 
 Using Divergence theorem, the equation is rewritten as  
 

( ) ( )[ ] ( ) ( )[ ] 0 .dsVVVVdvV-VV-V
s

2b1b2b1b
vol

2121 =−∇−≡∇∇ ∫∫ .  

 
One of the factors  ( ) ( ) 0VVVV. 21

2
21 =−∇=−∇∇  by hypothesis and that integral is zero. So 

the remaining integral also must be zero, i.e. ( )∫ =∇
vol

2
21 0dv]V-V[ .  

For the equality to be true, [ ( )21 V-V∇ ]2=0.  
So, ( ) 0VV 21 =−∇ .  
 
Since the gradient is zero everywhere, (V1-V2) cannot change with co-ordinates and must be 
constant. Considering the points on boundary, V1-V2=V1b-V2b=0.  
 
Therefore V1=V2. Hence the two solutions are identical. 
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1.4 METHOD OF IMAGES 
 

There are problems in electrostatics that are difficult to solve using methods like 
Coulombs law, Gauss’s law, and directly solving Poisson’s or Laplace’s equation. One such 
problem is finding the potential distribution of a point charge situated at a fixed distance above 
an infinite perfectly conducting ground plane. Such problems can be solved using a technique 
known as the Method of Images.  

 
The method of images is based on the theory that “any given charge distribution above 

an infinite, perfectly conducting plane is electrically equivalent to the combination of the given 
charge configuration and its image configuration, with the conducting plane removed”. The 
diagram below shows some examples of replacing charge distributions with their image 
equivalents. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Example 1: 
Determine the surface charge density distribution induced on a perfectly conducting grounded 
plane by a point charge q situated at a perpendicular distance d from the plane. 
 
Solution: 
To find the surface charge distribution we have  to find 
the normal component of the electric field intensity at 
any point on the plane. First find the field intensity E at  
any point P(x, y, z) above the plane.  

E   = 
0  4

1
επ

(q 3
1

1

R
R  - q 3

2

2

R
R )  

d 

q 

z 

V = 0 
j 

Conducting plane 
q 

- q 

V = 0 

xy- plane 

Image charge 

V = 0 

Conducting plane 

ρV Charge distribution ρV 

− ρV 

V = 0 

P(x, y, z) 

q(0, 0, d) 

- q(0, 0, - d) 

R1 

R2 xy-plane 

z 
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= 
0  4

1
επ

q [
2
3

222

zyx

]d) - (z  y  [x

ad) - (z  ay  ax

++

++ ˆˆˆ
  - 

2
3

222

zyx

]d)  (z  y  [x

a d)  (z  ay   ax

+++

+++ ˆˆˆ
]  for z ≥ 0. 

 
On the conducting plane z=0, the electric field intensity at any point P(x, y, 0) on the 
conducting plane is 

E = 
0  4

1
επ

q [
2
3

222

z

]d   y  [x

ad -

++

ˆ
  - 

2
3

222

z

]d  y  [x

a d 

++

ˆ
] = - 

0  2
1
επ

q
2
3

222

z

]d  y  [x

a d 

++

ˆ
. 

 
Since the unit vector normal to the plane is k̂ , we yield  

En = 
0

1
ε

ρs = -
0  2

1
επ

q
2
3

222

z

]d  y  [x

ad 

++

ˆ
• zâ  = - 

0  2
1
επ

q
2
3

222 ]d  y  [x

d 

++
  

or ρs = - 
  2

1
π

q
2
3

222 ]d  y  [x

d 

++
. 

Example 2: 
A positive point charge q is located at distances d1 and d2, respectively, from two perfectly 
conducting perpendicular half-planes (see diagram). Find the force on q due to the charges 
induced on the planes.   

 

 
 

 

 

 

Solution: 
The equivalent image charge arrangement is as shown in the diagram below: 
 

 

 

 

 

 

 

 
 
 

d2 

d1 q 

d2 

d1 q 

-q q 

-q q 

-q q 

-q F3 F2 

F1 θ 

x 

y 
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The three image charges are required to ensure that the potential at both the horizontal and the 
vertical half-planes is zero. These three image charges exert forces 1F , 2F , and 3F  on the 

charge q, and the resultant force acting on q is F  = 1F + 2F + 3F . Using Coulomb’s law, we 
find: 

1F  = - zâ  q2 
0  4

1
επ 2

2 )d (2
1  

 

2F  = - yâ  q2 
0  4

1
επ 2

1 )d (2
1  

 

3F  = q2 
0  4

1
επ 2

2
2

1 )d (2  )d (2
1
+

( yâ  cos θ  + zâ  sin θ)  

     = q2 
0  4

1
επ

2
3

2
2

2
1 ])d (2  )d [(2

1

+
( yâ  2 d1  + zâ  2 d2). 

 
Therefore, the resultant force is 

F  = q2 
0  16

1
επ

 { yâ
















+
2
12

3
2
2

2
1

1

d
1 - 

)d  (d

d  + zâ
















+
2
22

3
2
2

2
1

2

d
1 - 

)d  (d

d }. 

 
 
 
 
 
 


