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Chapter 2 Radiating Systems 
    

2.1 ANTENNA FUNDAMENTALS 
Antenna is the transition region between a guided wave propagating in a transmission 

line and an electromagnetic free space wave or vice-versa. Antennas are used to radiate and 
receive electromagnetic waves. 

 
The structures of antenna can be a single straight wire or a conducting loop excited by a 

voltage source, and aperture at the end of a wave guide , or a complex array of radiating 
elements. A short linear conductor is called a short dipole or Hertzian dipole. The length L of 
dipole is very short compared to wave length, λ. In such antenna the current vanishes at the ends 
of the wire where charges must be accumulated. 
 
 Any linear antenna can be analyzed by treating it as a combination of large number of 
short dipoles connected in series. 
 

2.2  RETARDED VECTOR POTENTIAL OF SHORT DIPOLE 
 Consider a very short wire carrying an a.c. current varying sinusoidally in time. 
 

 
Figure 1 Retarded potential from small current element. 

The instantaneous current can be expressed as 

 )tcos(II m ω=         (1) 
where  
Im is the maximum or peak current; 
I is the current at any instant;   

f2πω = is the angular frequency.  
The vector electric potential expression represents the superposition of potentials due to various 
current elements (I dl), at any point P, at distance r from the element. 
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 Now, introduce the concept of retardation. The electromagnetic waves have finite 
propagation times. This results in a time delay between the sources and potentials at a distance 
from the sources. The effect (potential) observed a distant point P from a given source at any 

instant t is due to a current flowing at an earlier time 







c
r-t .  

The instantaneous current given by equation (1) is modified as 

 [ ] 







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



=

c
r-tcosII o ω        (2) 

where  
r is the distance between observation point and source; 
c is the velocity of propagation; 
[I] is the retarded current; 

( )t r
c

− is the retarded time . 

The magnetic vector potential 
r
A  is along z-direction having only z-component, Az  retarded in 

time by “
c
r ” seconds.  

Since I J ds and dv ds dl= = ⋅∫ '  

where ds is the cross-section area and dl is the length andβ π
λ

ω= =2
c , 

the equation for the retarded vector magnetic potential can be written as 

 r
rtlIA m

z π
βωµ

4
)cos( −

=             (3) 

2.3 RADIATION FIELDS OF ELEMENTAL DIPOLE 
 The expressions of radiated electromagnetic fields from Hertzian dipole are found using 
the following procedure.   
 
 Get the vector potential function A  and scalar potential V first. From the Maxwell’s 
equations, in the medium with source, we can construct the non-homogeneous wave equations. 

  ∇ − = −2
2
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The solutions to (4) and (5) are  
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R
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V
=
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     (6)        

and           V
e
R
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jkR

V
=

−

∫
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4πε
ρ

'
'

  (7)  

where k = =ω µε π λ2 /  is the wavenumber.  
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Both pairs of ( , )ρ J  and ( , )V A can be related through the following expressions: 
  ∇⋅ + =A j Vωµε 0   (8)            
and   ∇ ⋅ = −J jωρ   (9) 
 

• Determine A  from J  using (6)  -- [Integration] 

• Find H  using H A= ∇ ×
1
µ

   -- [Differentiation] 

• Obtain E  using E
j

H= ∇ ×
1
ωε

 -- [Differentiation] 

Consider an electric dipole of length l along the z-axis centred on the coordinate origin. In this 
case, the volume integral for vector potential reduces to one-dimensional integral, so that 
equation (6) becomes 

 Az r

Im l ei t r c
=

−µ ω

π

( / )

4       (10) 

It will be desirable to obtain E and H in polar coordinates. 
 
The magnetic field intensity is obtained from the magnetic potential, 

 B A H= ∇ × = µ   
and it is seen that the components of A are   

)sin(),cos(,0,0 θθ θ∂φ
∂

φ zzr AAandAAA −====
. 

(Due to spherical symmetry, the field is symmetrical. So, 0=∂φ
∂

)  

Now from ( )∇ × A in its polar coordinate components and using equation (10), we yield 
 

H Ar r= ∇ × =1 0µ ( )  

H Aθ µ θ= ∇ × =1 0( )  
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The components of E can be calculated using Maxwell’s equation, 
 

∇ × =H E
tε ∂
∂  .  
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Thus, the electric field components are 
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   (12) 

In the above equations, η µ
ε= represents the intrinsic impedance of the medium (η= 120 π 

ohms, in free space).  
 

The field of the short dipole has only three components namely φθ HEEr ,, . 

 

2.4 INDUCTION (NEAR) FIELD AND RADIATION (FAR) FIELD 
 
Consider the expression for magnetic field intensity. 
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2.4.1  The Radiation Field 
 
The first term varies inversely as distance (e.g. 1/r) and it is known as radiation field or far field. 
This field is of great significance at large distance. 

2.4.2 The Induction Field 
 
The second term varies inversely as square of the distance and it is known as near field or 
induction field. Induction field will be predominant at points close to the current element, where 
r is small. 
 
Consider now the expressions for Electrical field intensity. 

• Induction term contains; 1/r2 term. 
• Radiation term contains, 1/r  term. 

The term varying inversely as a cube of distance (1/r3), is called as electrostatic field, due to its 
similarity with components of an electrostatic dipole. (It is important near the current element). 
 
We can consider that the space is divided into three regions. 

2.4.2.1 Far field region/Radiation zone/Fraunhofer region 
At a distance where r >>λ/2π, no radial component is present in the radiation field.  
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Thus, the radiation of electric and magnetic (far) fields, have only two field components, given 
by  

 E j I l e
cr

m
j t r

θ
β θ

πε

ω β
=

−sin( ) ( )

4     (13) 
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=    (14) 
 
The electric field and the magnetic field lie on the spherical surface and for a small area would 
appear as a plane wave-traveling in the outward direction. 
 
The ratio of Eθ and Hφ  represents the intrinsic impedance, at point P( r,θ , φ) , and it is given by 
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o

o
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        (15) 

2.4.2.2 Near field region or Fresnel region 
At a distance where r << λ/2π, the near field expression is given by equations (11) and (12). The 
electric dipole has to component Er and Eθ which are both in time phase quadrature with 
magnetic field. 
 
For Eθ and Hφ components, the near field pattern are the same as the far field patterns as both are 
proportional to “sin(θ)”. However near-field pattern for Er is proportional to “cos (θ)”. 
 

2.4.2.3 Reactive Near field region 
That portion of near field region immediately surrounding the antenna wherein the reactive field 
predominates. 
 
Quasi-stationary case (At very low frequencies): At low frequencies ω approaches zero. 
Therefore Er, Eθ, and Hφ  will become 
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The electric fields given by equation (16) are identical to electrostatic fields of two points 
charges ±Q separated by a distance l.  
 
The relation for magnetic field may be recognized as Biot-Savart law for the magnetic field of a 
short element current. 
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2.5  ANTENNA TERMINOLOGY 
2.5.1 Isotropic Radiator 
An isotropic radiator is an antenna which radiates uniformly in all directions. It is also called 
isotropic source or omni directional antenna. An isotropic antenna is a hypothetical loss less 
radiator, which with the practical antennas are compared. Thus, an isotropic radiator is used as 
reference. 
 
Imagine that an isotropic radiator is situated at the center of a sphere of radius r. Then all energy 
(power) radiated from it, must be over the surface area of the sphere. Thus, the total power 
radiated by the source is given by 

 P P r Wattst r= 4 2π [ ]         (17) 
 
where   Pt : total radiated power, in Watts;   Pr : radial power density, in Watts/m2; r: radius of 
the sphere in meters. 
 
The power density Pr on the wave front in Watts per square meter is 

  P Watts mr
P
r
t=

4
2

2π
[ / ]      (18) 

 
2.5.2 Radiation Pattern 
The radiation pattern of an antenna is a graph which shows the variation of field strength of 
electromagnetic radiation at all points which are at equal distance from the antenna. It determines 
the distribution of radiated energy in space. The radiation pattern of an antenna is usually 
compared to that of theoretical source, a point-source isotropic radiator. 
 
• If the radiation from the antenna is expressed in terms of the field strength E, the pattern is 

called the “Field Strength Pattern”.  
• If the radiation in a given direction is expressed in terms of power per unit solid angle, then 

the resulting pattern is called “Power Pattern”. 
 
The radiation pattern plot should be a three-dimensional plot. However, it can also be shown in 
two two-dimensional plots, namely the magnitude of the normalized field strength (with respect 
to the peak value) versus θ  for a constant φ  (the E-plane pattern); and the magnitude of the 
normalized field strength versus φ  for θ π= / 2  (the H-plane pattern). The coordinates system 
used is the spherical coordinates “ ),,( φθr  ”. The antenna is assumed to be located at origin of 
spherical coordinates system. 

The Poynting vector1 is given by  )Re( *
2
1 HEPr

rr
×=    (19) 

Using (13) and (14), we obtain Pr
I l

r
m= η
λ

θ
8

2 2

2
sin( )

    (20) 

where Pr is the power density in ar direction. 
 
The Radiated power is proportional to sin(θ) and it is maximum when θ = 90° and minimum 
when θ = 0° ( in the direction of axis of dipole).  
                                                            
1 Poynting vector is also known as power density or power per unit area. 



EMG3046 Advanced Electromagnetic Theory Chapter 2 Radiating Systems  
 

_____________________________________________________________________________________________ 
Multimedia University  Page 7 

Now let us consider the radiation pattern of the electric field in aθ   direction from a short current 
element. The magnitude of “radiation term” for such antenna is given by 

E I l
r

m
θ

π
λ θ= 60 sin         (21)      

Eθ  is proportional to sin(θ) .It is maximum when θ = 90° and minimum when θ = 0°  (in the 
direction of axis of dipole). 
 
Three dimensional pattern of a short vertical dipole is doughnut shaped (Figure 2). Figure 3 
illustrates the two dimensional pattern obtained by cutting three dimensional pattern with a 
vertical plane. Figure 4 illustrates the two dimensional pattern obtained by cutting three 
dimensional pattern with a horizontal plane at the centre of the dipole. 
 
 

 

 

 

 

 
 
 

For a horizontal placed antenna, the patterns are shown in Figure 5, 6 and 7. 
 

 
 
 
 
 
 
 
 
 
 

To completely specify the radiation pattern with respect to field intensity and polarization three 
patterns are required. They are: 

• The θ component of electrical field, Eθ  as a function of θ  and φ; 

• The φ component of electrical field, φE  as a function of θ  and φ; 
• The phases of these fields as a function of the angles θ  and φ. 

 
2.5.3 Radiation Pattern Lobes 
The performance of the antenna is usually described in terms of its principal E-plane and H-
plane patterns. For linearly polarized antennas, the E-plane pattern is defined as “the plane 
containing the electric field vector and the direction of maximum radiation”, and the H-plane 
pattern is defined as “the plane containing the magnetic field vector and the direction of 
maximum radiation”. 
 
It is practice to orient most antennas in such a way that at least one of the principal plane patterns 
coincide with one of the geometric planes (Figure 8). Different parts of radiation pattern are 

Figure 2 Figure 3 Figure 4 

Figure 5 Figure 6 Figure 7 
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referred to as lobes. This may be sub-classified as major lobe, minor lobe, side lobe and back 
lobe (Figure 9): 

• Major lobe: It is also called main beam and is defined as the radiation lobe containing the 
direction of maximum radiation. 

• Minor lobe: It is any lobe except a major lobe. 
• Side lobe: A side lobe is adjacent to the main lobe and occupies the hemispheres in 

direction of the main lobe. 
• Back lobe: Normally refers to a minor lobe that occupies the hemispheres in a direction 

opposite to that of the major (main lobe). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

2.5.4 Radiation Intensity 
Radiation intensity is defined as power per unit solid angle.  It is a quantity that does not depend 
on the distance from the radiator. It is denoted by letter U. Unit of radiation intensity is 
Watts/steradian.  
The radiation intensity, U is equal to r2 times the magnitude of the time average Poynting vector. 

  U r Pave= 2
         (22)     

 
The radiation intensity can be also expressed as  

 
2

max ),( φθFUU =         (23)  

where maxU  and
2),( φθF  are respectively the maximum radiation and the power pattern 

normalized to a maximum value of unity.  
 
Thus, total power radiated is 
 

∫∫
∫∫∫∫

Ω=

Ω==

d),(FU

d),(Uds.PP

max

avet

2φθ

φθ
     (24) 

where dΩ = element of solid angle = φθθ ddsin . 

Figure 8 Figure 9 
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For an isotropic radiator with uniform radiation in all directions, total solid contains 4π 
steradians. 

 πφθ 4
tP

ave ),(UU ==              (25) 
2.5.5 Polar Diagram 
The antenna pattern is plotted on a decibel scale in polar coordinates, with intensity as the radial 
variable. This format permits a convenient visual interpretation of the directional distribution of 
the radiation lobes. This is called polar diagram.                               

                                             
2.5.6 Gain 
The gain of an antenna is defined as the ratio of maximum radiation intensity in given direction 
to the maximum radiation intensity from a reference antenna (Isotropic antenna) produced with 
the same power input.  

 Gain G U
Uave

= = max       (26)  

where  
Umax: Maximum Radiation intensity from test antenna;     
Uave: Radiation Intensity from Isotropic antenna. 
 
Since gain denotes concentration of energy, the high values of gain are associated with narrow 
beam width.  The dipole has a minimal transmission or reception off the ends of the antenna, but 
the maximum radiation exceeds that of the isotropic radiator.  Since the gain comparison for 
antennas are made with the isotropic radiator pattern as a reference, the gain in decibel is written 
as dBi. 
 
2.5.6.1  Directive Gain 
The directive gain, Gd,  of an antenna is defined as, in a particular, as the ratio of the power  
density (Poynting vector) in that particular direction at a given distance, to the power density that 
would be radiated at the same distance by an isotropic antenna, radiating the same total power. 

Figure 10 Polar Diagram 
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antenna isotropican  ofintensity Radiotion  :U
antennaby test direction  particular ain intensity Radiation 

ave

=dG       (27) 

 
2.5.6.2 Power Gain 
The gain power compares the radiated power density of the actual antenna and that of an 
isotropic antenna on the basis of the same input power to both. 
 

antenna isotropican by  radiateddensity Power 
antennaby test direction  particular ain  radiateddensity Power 

=pG  (28) 

 
The directive gain and power gain are identical except that power gain takes into account the 
antenna losses.  
Thus,  dp GG η=         (29) 
where η is the efficiency factor. 
 
2.5.7 Antenna Efficiency 
The efficiency of an antenna is defined as the ratio of the radiated power to the total input power 
supplied to the antenna and is given by 

 η = = = +
Radiated power

Total input power
G
G

P
P P

p

d

t

t l
  (30)      

                 100×= + lr

r
RR

R%η      (31) 
where Rr is the radiation resistance and Rl is the Ohmic loss resistance of the antenna conductor. 
 
2.5.8 Directivity 
The directivity of an antenna is a measure of its ability to direct energy in one direction in 
preference to radiation in other directions. It is defined as the ratio of the radiation intensity of 
the test antenna in a certain direction to its average radiation intensity, or 
 

 aveU
),(U),(D φθφθ =   (32)  

 ∫∫
=

ΩdF

U
UD 2

4
max ),(

),(),(
φθ

φθ

π

φθ
    (33) 

 A

FD Ω=
2),(4),( φθπφθ     (34)  

where ΩA is the beam solid angle2. 
This result shows that directivity is entirely determined by pattern shape. 
 
2.5.9 Beam Solid Angle 
Beam solid angle is the solid angle through which that all the power would be radiated if the 
power per unit solid angle (radiation intensity) equals the maximum value over the beam area 
ΩA. 

                                                            
2 Beam solid angle also known as beam area. 
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 ∫∫ Ω=Ω dFA
2),( φθ            (35) 

 Pt = ( )∫∫ Ωd,U φθ  (36)                  

 ( ) 2
max ,FUU φθ=  (37) 

 
From (36) and (35), we see that the total radiated power can be written as 

 Amaxt UP Ω=       (38) 
 
Maximum directivity follows from (32) as 

 D U
U

U
Pave Amax /

max max= = =4
4

π
π

Ω     (39)  

 
Also from (32) and (23), we see that 

 
2

max
),( ),(),(

2
max φθφθ φθ FDD

aveU
FU ==   (40) 

Since
2),( φθF  can have a maximum value of unity, the maximum value of directivity is   

 Dmax = 
ave

max

U
U

 

2.5.10 Half Power Beamwidth (HPBW)  
It is the angular separation between the points on power pattern where the power value is one-
half the maximum value. In case of field intensity pattern the angular separation between 0.707 
times the maximum intensity points will be the HPBW.  
 
The half power beam width values can be used to find approximate directivity of an antenna 
neglecting the minor lobes. 

o
Hp

o
HPHPHP

approx
410004D

φθφθ
π

==      (41) 

 where HPHP,φθ  are half power beam widths in radians and HP
o

HP
o ,φθ  are in degrees. 

 
2.5.11  Side Lobe Level  
Side lobes refer to the regions of unwanted radiation that are normally found surrounding the 
main beam. Side lobe level is usually referred to the level of the highest side lobe, which is 
normally the nearest side lobe to the main beam.  
 
In modern radar application, it is required that the side lobe levels are of the order of minus 40 or 
more decibels from the level of main beam. 
 
2.5.12 Radiation Resistance 
Rr of an antenna is the hypothetical resistance that would dissipate the same amount of power as 

the radiated power Pr. We can find Rr from P I Rr r=
1
2

2   where the current I in the resistance is 

equal to the maximum current flowing along the antenna. 
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The radiation resistance of short dipole =
2








λ

π l80 2 ohms    (42) 

 The radiation resistance of  
2
λ  antenna3 = 73 ohms     (43) 

 
 
2.5.13 Effective Area/Effective Aperture/Capture Area 
In the transmitting mode of antennas, the time varying current and charges radiate 
electromagnetic waves, which carry energy, from a transmitting antenna to a receiving antenna.  
 
The receiving antenna extracts energy from an incident electromagnetic wave and delivers it to a 
load. The concept of effective aperture is best understood by considering an antenna to have an 
area which extracts electromagnetic energy from an incident electromagnetic wave. It may be 
defined as the ratio of power received at the antenna load terminal to the Poynting vector (or 
power density) in Watts/m2 of the incident wave.  

Thus,   Ae
P

Pave
=        (44) 

where   
P = Power received in Watts; 
Pave  = average Poynting vector of incident wave in Watts/m2 .Ae    =  Effective area in m2 . 
 
Let a receiving antenna be placed in the field of a plane polarized wave as in Figure 11(a). 
 
 The receiving antenna (dipole) is terminated in load impedance, LLL jXRZ += .  
Since antenna extracts energy from incident electromagnetic waves, delivers the same to 
terminated load impedance, ZL, this entire system can be replaced by an equivalent circuit given 
in Figure 11(b).  

 
Figure 11 

V    = Equivalent open circuit or Thevenin voltage. 
AAA X jRZ += = Equivalent Thevenin’s impedance and lRRR rA +=  (radiation resistance + 

loss resistance).  

                                                            
3 This radiaton resistance can not be found simply from equation (42) since it is not a short dipole. 
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The induced current through the terminal load is Irms
V

Z ZL A
= +

.  

If, 0R =l , i.e., the antenna is lossless,  

then   Irms
V

R jX R jXL L A A
= + + +    (45)  

 
The power received by the antenna is given by 

( ) ( )
P V R

R R X X
L

L A L A
=

+ + +

2

2 2   

Hence the effective area Ae can be written as 

( ) ( )[ ]Ae
V R

R R X X P
L

L A L A ave
=

+ + +

2

2 2   (46) 

 
If the load impedance is matched to the internal impedance,  

then   Z Z R jXL A A A= = −*
 

 and the maximum effective area will be  

( )Ae
V

R Pr avemax =
2

4      (47) 

 
2.5.14 Physical Aperture 
The physical aperture is related to the actual physical size (or cross-section) of the antenna and is 
denoted by Ap. The physical aperture may be defined as “the cross-section perpendicular to the 
direction of propagation of incident electromagnetic wave with antenna set for maximum 
response”. 

If no losses are there, A Ap e= ; D=
A

4
Ω
π

  and λ2=AeΩA where  ΩA is the beam area.  

From these, we get    

D Ae= 4
2
π
λ

        (48)  

This is the directivity and the effective aperture relation. 
 
2.5.15 Effective Length 
The term effective length of an antenna represents the effectiveness of an antenna as radiator or 
as collector of electromagnetic wave energy. For a receiving antenna, the effective length is the 
ratio of the induced voltage at the terminal of the receiving antenna under open-circuit condition 
to the incident electric field intensity E.  

le V
E=  (meters)      (49) 

In terms of the maximum effective aperture, the effective length can be written as 

( )
le

R Ar e= 2 377
max  (meters)    (50) 
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Now for transmitting antenna, the effective length is that of an equivalent linear antenna that has 
the same current I (as the terminal of the actual antenna) at all the point along its length and that 
radiates the same field intensity E as the actual antenna. 
I = current at the terminals of the actual antenna; I(z) = current at any point z of the antenna; 
 le = effective length; and l = physical length. 
 
Hence, for transmitting antenna, the effective length is given by   

( )∫=
/2

/2-
e dzzI

I
1 l

l

l  

 

2.6 RECIPROCITY THEOREM 
 The reciprocity theorem for antenna is stated as follows 
“If an e.m.f. is applied to the terminals of an antenna no.1 and the current measured at the 
terminals of antenna no.2, then an equal current both in amplitude and phase will be obtained at 
the terminals of antenna no.1, if the same e.m.f. is applied to the terminals of antennas no.2.”  

OR 
“If a current I1, at the terminals of antenna no.1 induces an e.m.f. E21 at the open terminals of 
antenna no.2 and a current I2 at the terminals of antenna no.2 induces an e.m.f. E12 at the open 
terminals of antenna no.1, then E12 = E21, provided I1 = I2”. 
 

A transmitter of frequency f and zero impedance is connected to the terminals of antenna 
no.2, which is generating a current I2 and inducing an e.m.f. E12 at the open terminals of antenna 
no.1. Now, the same transmitter is transferred to antenna no. 1 which is generating a current I1 
and inducing an e.m.f. E21 at the open terminals of antenna no.2. 
 

According to the statement of reciprocity theorem, I1 = I2 provided E12 = E21. The ratio 
of an e.m.f. to the current is an impedance, therefore, the ratio E12 / I2 is given the name: transfer 
impedance Z12, and so also E21 / I1 as transfer impedance Z21. From reciprocity, it follows that 
the two transfer impedances are equal: Z12 = Z21. This is called the mutual impedance, Zm, 
between the two antennas. Therefore, Zm = Z12 = Z21. 

2.7  FRIIS’S TRANSMISSION FORMULA 
The two antennas shown in Figure 12 are part of a free-space communication link, with 

the separation between the antennas, R, being large enough for each antenna to be in the free-
field region of the other. The transmitting and receiving antennas have effective areas At, and Ar 
and radiation efficiencies ξt and ξr, respectively. 
 

Our objective is to find a relationship between Pt, the transmitter power supplied to the 
transmitting antenna, and Prec, the power delivered to the receiver by the receiving antenna. As 
always, we assume that both antennas are impedance matched to their respective transmission 
lines.  
 

Initially, we shall consider the case where the two antennas are oriented such that the 
peak of the radiation pattern of each antenna points in the direction of the other. The average 
power density at receiver (for maximum reception) is  

S = 24 R
Pt

π
         (51) 
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Power intercepted by the receiving antenna with an effective area Ar  is 
   Pint = S Ar          (52) 
 
The transmitting antenna has effective aperture At. So, directivity is D= 4π At/λ2.  
Hence, power available at receiver is 

Pr= DS Ar  

    = S Ar4π At/λ2 = 2
t

2
rt A4

r4
AP

λ
π

π
= 22

trt

r
AAP
λ

  (53) 

22
tr

t

r

r
AA

P
P

λ
=        (54) 

The relation is known as the Friis’s Transmission Formula, and Prec/Pt is sometimes called the 
power transfer ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.8  RADAR EQUATION  

Basic arrangement shown in Figure 13 below. 
 

T 

R 

 PASSIVE 
SCATTERING 
OBJECT 

BACK SCATTERED  WAVE 

Transmitting - Receiving Antenna 

INCIDENT WAVE 

Figure 12 

Figure 13 
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 A transmitter connected to transmitting antenna will send a pulse. The pulse strikes a 
passive object .The power intercepted by the object is given by Friis’s formula,  

Pint(object)= σ
λ22

tt

r
AP

 where σ =radar cross-section of object m2. 

 
 Assuming that the object scatters energy in all directions uniformly, that is D=1, its 

effective aperture will be 
π
λ
4

2

. The scattered power received back at the transmitter location is 

given by use of Friis’s formula once again as 

  
π
λ

λ 4r
AP

P
2

22
t)int(object

antenna)r(by =  

 Substituting for Pint(object) and rearranging, we yield 

 24

2

t

r(antenna)

r4
A

P
P

λπ
σ

=   

This is the radar equation. 
 
2.9 RADIATION PATTERN OF A THIN WIRE ANTENNA 
 In the case of short dipole, we have assumed constant current distribution on the short 
electric dipole. But it has been found numerically and confirmed experimentally that the current 
on thin wire antennas is approximately sinusoidal. 
 
 We will use such approximation to analyze the radiation fields of a linear thin wire 
antenna. Thus, consider the linear wire antenna shown in Figure 14. 

 
Figure 14 

The sinusoidal current distribution may be assumed as 

 I z I l z l z lm( ) sin ( )= − − < <β     (54) 

From this current, we can calculate the radiation pattern since it is a z-directed line source, by 
regarding the antenna as made up of a series of infinitesimal dipoles of length dz. The field of the 
entire antenna may then be obtained by integrating the fields from all of the dipoles making up 
the antenna.  
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The far fields dEθ and dHφ  at a distance s from the infinitesimal dipole dz are integrated to get 
the total fields as  

 E j I dz
s

l

l
retarded

θ
π θ

λ=
−
∫

60 sin( )
                (55)       

 ∫
−

=
l

l
s

dzIretardedjH λ
θ

φ 2
)sin(

               (56) 

Introducing the value of Iretarded from (54) in (56), we have4  



























∫
−

−+

∫
−

−
+

=

dz
l sjezls

dz
l

sjezlstjemjI
H

0
))(sin(1

0
))(sin(1

2
sin

ββ

ββ

λ

ωθ
φ  (57) 

 
At large distance the effect between s and r can be neglected as in its effect on the amplitude 
although its effect on the phase must be considered.  
 
From Figure 14, θcoszrs −=       (58) 
 
Substituting (58) in (57) and also s=r for the amplitude factor, (57) becomes 
 



























∫ −+

∫
−

+−
=

dz
l zjezl

dz
l

zjezl

r

rtjemjI
H

0

)(cos))(sin(

0 )cos())(sin(

2

)(sin

θββ

θββ

λ

βωθ
φ

  (59) 

Thus the magnetic field in φ-direction follows as  

 [ ]θ
βθβ

πφ sin
)cos()coscos(

2
ll

r
jIretardedH −=                              (60) 

Multiplying Hϕ  by 120π gives  

 [ ]θ
βθβ

θ sin
)cos()coscos(60 ll

r
Ij retardedE −=                         (61) 

The time average power density may be obtained from equation (60) and (61).  

Thus,  [ ]2sin
)cos()coscos(15

2

2

θ
βθβ

π
ll

r
I

r
mP −=               (62)    

 

                                                            
4 Equation (57) assumes the total length of linear wire antenna is 2l. 
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and  [ ]F l l
θ

β θ β
θ= −cos[( cos ) cos( )]

sin                      (63) 

 
The factor F(θ) represents the relative pattern radiation as a function of θ. 
 

For the specific case of half wave length antenna, 2l=
2
λ

 and βl=  
24

2 πλ
λ
π

=  

The factor F(θ) will become F(θ)=
θ

θ
π

sin

cos
2

cos( )
     (64) 

 
2.10 ANTENNA ARRAYS 
 To produce desired directional radiation pattern, several antennas can be arranged in 
space and interconnected.  Such a configuration of multiple radiating elements is referred to as 
an array antenna, or array. 
 
 Many small antennas can be used in an array to obtain a level of performance similar to 
that of a single large antenna. Arrays are found in many geometrical configurations.  The most 
elementary is that of a linear array in which the array element centres lie along a straight line. 
 
Case 1: Two Isotropic Point Sources with Identical Amplitude and Phase Currents, and 

Spaced One-Half Wavelength Apart 
 
If we use phases corresponding to the path length differences shown in Figure 15, the array 
factor is 

 AF=
/2j/2j- EeEe ψψ ++ =2E cos (ψ/2) 

where ψ=βd cosθ.  
When d=λ/2 and  β=2π/λ ,βd=π 
                  

 
   Figure 15  

 
The array factor AF becomes 

)coscos( θπ
22EAF=  

Normalizing the array factor for a maximum value of unity gives 

f ( ) cos( cos )θ θπ= 2       (65) 

 
The polar plot of the array is given in Figure 16. 
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Figure 16 

 
Case 2: Two Isotropic Point Sources with Identical Amplitudes and Opposite Phases, and 

Spaced One-Half Wavelength Apart  
 
The arrangement is still same as Case 1, as shown in Figure 15. The left source is 180° out-of-
phase with respect to the right source. Taking the centre of sources or origin as reference for 
phase, we can take radiation from right source is leading by 900 and from left source is lagging 
by 900.    
 
If we use phases corresponding to the path length differences shown in Figure 15, the array 
factor is 

AF=-
/2j/2j- EeEe ψψ ++ =2jEsin(ψ/2) 

Using  
β πd
2 2= , the array factor AF becomes  

)cos( θπ
22jEsinAF =  

Normalizing the array factor for a maximum value of unity gives 

f ( ) sin( cos )θ θπ= 2      (66) 

From this, the pattern can be sketched, yielding a plot as shown in Figure 17. 
 

 
Figure 17 

 
2.11 PATTERN MULTIPLICATION 
 The total field pattern of an array of non-isotropic but similar sources is the product of 
the individual source pattern and the pattern of an array of isotropic point sources, each located 
at the phase centre of individual source with relative amplitude and phase of the source; while 
the total phase pattern is the sum of the phase patterns of the individual sources and array of 
isotropic point sources. This is called the principle of pattern multiplication. 
 
 E (total) = E (source pattern) × E (isotropic array pattern) 
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Example 1: 
Consider two collinear short dipoles spaced a half-wavelength apart and equally excited.  
The element pattern is sinθ for an element along the z-axis and the array factor was found to be 

)cos( 2
ψ

.   

Here,  Total pattern = sinθ X )cos( 2
ψ

   

where  ψ= θβ cos d =π cosθ 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Example 2: 
 
Consider two Parallel, Half-Wavelength Spaced Short Dipoles 
The complete pattern for the array of two parallel short dipoles in is found by pattern 
multiplication as indicated.  

 

  

 

 

Figure 18 Array of two half-wavelength spaced, equal amplitude, equal phase, and collinear short dipoles 
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2.12 LINEAR ARRAY OF N ISOTROPIC POINT SOURCES OF EQUAL AMPLITUDE 

AND SPACING 
 
 Consider a linear array of n isotropic point sources of equal amplitude and spacing. At a 
large distance in direction θ, the total field is given by 
 ( )ψψψ 1-njj2j e..........ee1E ++++=     (67)  
where ψ is the phase difference of the field radiated in the θ direction from adjacent sources and 

is given by  δθ
λ
π

ψ += cosd2
     (68) 

where d= spacing between sources and δ is phase difference between adjacent sources. In this 
case, source 1 is taken as reference for phase and amplitude of each source is taken as 1.  
Multiply (67) by ejψ, we yield  
 ( ) ψψψψψ jn1-njj2jj ee..........eeEe ++++=    (69) 
 
Subtract (69) from (67), we yield 
 E(1-ejψ) = 1-ejnψ    

Figure 19 Array of two half-wavelength spaced, equal amplitude, equal phase parallelshort dipoles. 
From top to bottom: (a) The array; (b) The xz-plane pattern; (c) The yz-plane pattern. 
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and    
ψ

ψ

j

jn

e-1
e-1E =         (70) 

 
Rearranging it, we yield 

 








−
−

= /2j-/2j

/2jn-/2jn

/2j

/2jn

ee
ee

e
eE ψψ

ψψ

ψ

ψ

=
( )
( )/2sin

/2nsine j

ψ
ψξ

 

 =

( )
( )/2sin

/2nsin
ψ
ψ

=
ξ         (71) 

where ξ = ψ
2

1-n
  is the phase angle of E referred to field from source 1. 

If centre point of the array is taken as reference for phase, then ξ=0 and  

 Array pattern =
( )
( )/2sin

/2nsin
ψ
ψ

.    

For ψ=0, we get E=n. This is the maximum value that E can attain. ∴ Emax = n.  
 
Therefore, normalised value of total field,  

 En=
( )
( )/2sin

/2nsin
n
1

ψ
ψ

       (72) 

In this case the maximum radiation occurs in a direction θm such that βd cos θm+ξ=0. 
 
 When maximum radiation occurs in a direction perpendicular to the line of array, i.e. in 
the direction θ = ±π/2, it is called broadside array. This happens when ξ=0. If the maximum 
radiation occurs in the direction θ=0, it is called end-fire array. For this, ξ= -βd. 
 


