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Chapter 4 Time-Domain Analysis of Control Systems 

4.1  INTRODUCTION 
The ability to adjust the transient and steady-state response of a control system is a beneficial 
outcome of the design of a feedback system. Since time is used as an independent variable in 
most of control systems, it is usually of interest to evaluate the state and output responses with 
respect to time, or simply the time response.  
 
In the analysis problem we will use selected input signals to test the response of control system. 
This response will be characterized by a selected set of response measures. In this chapter, we 
will strive to delineate a set of quantitative performance measures that adequately represent the 
performance of the control systems. 
 
4.2 TIME RESPONSE AND TEST SIGNALS 
The time response of a control system is usually divided into two parts: the transient response and 
the steady-state response. Let y(t) denote the time response of a continues-data system; then, in 
general, it can be written as 

y(t) = yt(t) + yss(t)          (4.1)  
where yt(t) denotes the transient response and yss(t) denotes the steady-state response. 
 
In control systems, transient response is defined as the part of the time response that goes to zero 
as time becomes very large. Thus yt(t) has the property 

0)(lim =
∞→

tytt        (4.2) 
The steady-state response is simply the part of the total response that remains after transient has 
died out.  All real stable systems exhibit transient phenomena to some extent before the steady 
state is reached. 
 
In the design problem, specifications are usually given in terms of the transient and steady-state 
performance, and controllers are designed so that the specifications are all met by the design 
system. 
 
Since it is difficult to design a control system so that it will perform satisfactory for all possible 
forms of input signals, it is necessary, for purpose of analysis and design, to assume some basic 
types of test signals properly for the prediction of system's performance to other more complex 
inputs. 
 
1. Step-Function Input  
The step-function input represents an instantaneous change in the reference input. The 
mathematical representation of a step function of magnitude R is 
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Mathematically, r(t) = Rus(t), where us(t) is the unit-step function. The step function is shown in 
Figure 4.1 (a). 
 
2. Ramp-Function Input  
The ramp function is a signal that changes constantly with time. Mathematically, a ramp function 
is represented by 

)()( tRtutr s=  
where R is a real constant. The ramp function is shown in Figure 4.1 (b). 
 
3. Parabolic-Function Input  
The parabolic function represents a signal that is one order faster than the ramp function. 
Mathematically, it is represented as 

)(
2

)(
2

tuRttr s=  

The Parabolic function is shown in Figure 4.1 (c). 

 
Figure 4.1 Time-domain test input signals: (a) Step, (b) Ramp, (c) Parabolic 

 
4.3 UNIT-STEP RESPONSE AND TIME-DOMAIN SPECIFICATIONS 
For linear control systems, the time response is characterized by using the unit step-input. The 
response of the control system to the unit step-input is called unit-step response. Figure 4.2 
illustrate a typical unit-step response of a linear control system.  
 
With reference to unit-step response, the following performance criteria (parameters) are defined: 
 
1. Maximum overshoot  
Let ymax denotes the maximum value of y(t) and yss be the steady-state value of y(t) and ymax ≥ yss. 
The maximum overshoot of y(t) is defined as, 

Maximum overshoot = ymax - yss 

Percent maximum overshoot = 
ssy
overshoot maximum  × 100%  (4.3) 

2. Delay time  
The delay time, td is defined as the time required for the step response to reach 50% of its final 
value. 
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3. Rise time  
The rise time, tr is defined as the time required for the step response to rise from 10 to 90 percent 
of its final value. 
 
4. Settling time  
The settling time, ts is defined as the time required for the step response to reach and stay within a 
specified percentage (5%) of its final value. 

 
Figure 4.2 Step response of a control system 

 
Analytically, these quantities are difficult to establish, except for simple systems lower than the 
third order. 
 
4.4 TRANSIENT RESPONSE OF A PROTOTYPE SECOND-ORDER SYSTEM 
Although true second-order control systems are rare in practice, their analysis generally helps to 
form a basis for the understanding of analysis and design of higher-order systems, especially the 
ones that can be approximated by second-order systems.  
 
Consider that a second-order control system with unity feedback is represented by the block 
diagram shown in Figure 4.3. The open-loop transfer function of the system is  

( )n

n

ss
sG

ξω
ω

2
)(

2

+
=                                            (4.5) 

where ξ and ωn are real constants. The closed-loop transfer function of the system is 
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The characteristic equation of the prototype second-order system is obtained by setting the 
denominator of Eq. 4.6 to zero 

02)( 22 =++=∆ nnsss ωζω                                    (4.7) 
 
As we shall see later, the system is stable (bounded output for bounded input) if the roots of the 
characteristic equation locate on the left half of s-plane, and marginally stable (oscillation for a 
bounded input) if the characteristic equation has simple roots on the imaginary axis with all other 
roots in the left half of s-plane. For an unstable (unbounded output for any bounded input) system 
the characteristic equation has at least one root in the right half of the s-plane or it has a repeated 
jω roots.  

 
Figure 4.3 Prototype Second-order control system 

 
For a unit-step input, R(s) = 1/s, the output response is given as 

)2(
)( 22

2

nn
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sss
sY

ωζω
ω

++
=                                           (4.8) 

By taking inverse Laplace transform, we obtain the unit step response of the control system 

( ) 0t        tety n

tn

≥+−
−

−= −
−

ζζω
ζ

ζω
12

2
cos1sin

1
1)(            (4.9) 

Figure 4.4 shows the unit-step response of the second-order system for various values of ζ. It 
may be noted that the response becomes more oscillatory with larger overshoot as ζ decreases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 Unit-step response of second-order system with various ξ values 
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4.4.1 Damping Ratio and Damping Factor 
The effects of the system parameters ξ and ωn on the step response y(t) can be studied by 
referring to the roots of the characteristic equation in Eq. (4.7). The roots can be expresses as 

ωα

ζωζω

j        
jss nn

+−=

−±−= 2
21 1,

                                     (4.10) 

where                                α = ξωn                                                                                      (4.11) 

and     21 ζωω −= n                                                  (4.12) 
The physical significance of ξ and α is now investigated. As seen from Eq. (4.9) the factor  
α = ζωn appears as a constant multiplied by t in the exponential term of the response y(t). 
Therefore, α controls the rate of rise or decay of the unit-step response y(t). In other words, α 
controls the “damping” of the system and is called damping factor. The inverse of α , 1/α is 
proportional to the time constant of the system. When ζ = 1, the oscillations disappear and the 
system is said to be critically damped. Under this condition α = ωn. Thus, we can regard ζ as  

dampingcriticaltheatfactordamping
factordampingactual

n

==
ω
α

ζ                    (4.13) 

When ζ < 1, the system is under-damped and when ζ > 1, the system is over-damped. 

4.4.2 Natural Undamped Frequency 
The parameter ωn is defined as the natural undamped frequency. As seen from equation (4.10), 
when  ζ = 0, the roots of the characteristic equation are imaginary. Thus, the unit-step response of 
the system becomes purely oscillatory with angular frequency of ωn. For 0 < ζ < 1, the imaginary 
parts of the roots have the magnitude of the actual (damped) frequency of oscillation.  

Thus,    21 ζωω −= n  
Figure 4.5 illustrates the relationships between the location of the characteristic equation roots 
and α, ξ, and ωn. 

 
Figure 4.5 The relationship between the characteristic equation roots and α, ξ, and ω 
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The effect of the characteristic equation roots on the damping of the second-order system is 
illustrated in Figure 4.6 

 
Figure 4.6 Step-response comparisons for various  

characteristic equation – root locations in the s-plane 

4.4.3 Analytical Expression for Maximum Overshoot 
By taking the derivative of Eq. (4.9) with respect to time t and setting the result to zero, we get 

te
dt

tdy
n

tn n  .1 .sin
1
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= −    (4.14) 

,...,,nntn 3211 2 ==− πζω  
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For the unit-step responses shown in Fig. 4.4, the first overshoot is the maximum overshoot. This 
corresponds to n = 1 in Eq. (4.15). Thus, the time at which the maximum overshoot occurs is 

2max
1 ζω

π

−
=

n

t                                                        (4.16) 

With reference to Fig. 4.4, the overshoots occur at odd values of n, that is, n =1, 3, 5, …, and 
undershoots occur at even values of n. 
 
The magnitude of the overshoot and undershoots can be determined by subistituting Eq. (4.14) 
into Eq. (4.9). This results in  y(t)max  or y(t)min . Therefore 

211overshootmaximum ζ

πζ

−

−

=−= eymax                              (4.17) 
and the percent maximum overshoot is 

2-1

-

100eovershoot maximumpercent ζ

πζ

=                           (4.18) 
 
The relationship between the percent maximum overshoot and the damping ratio, given in Eq. 
(4.18) is plotted in Figure 4.7. 

 
Figure 4.7 The relationship between the percent maximum overshoot and the damping ratio 

4.4.4 Delay Time and Rise Time 
It is more difficult to determine the exact analytical expressions of the delay time td and rise time 
tr, and settling time ts. However, we can utilize the linear approximation 

1.00      7.01
<<

+
≅ ζ

ω
ζ

n
dt                                    (4.19) 
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The plot of ωntr versus ξ is shown in Figure 4.8. This relation can be approximated by a straight 
line over a limited range of ξ: 

10     16.260.0
<<

+
= ζ

ω
ζ

n
rt                                  (4.20) 

 
Figure 4.8 Normalized rise time versus ξ for the prototype second-order system 

 
From this discussion, the following conclusions can be made:  
1. tr and td  are proportional to ξ and inversely proportional to ωn. 
2. Increasing (decreasing) the natural undamped frequency ωn will reduce (increase) tr and td. 
 
In regard to the settling time ts, it can be approximated as  

69.00      2.3
<<≅ ζ

ζωn
st                                         (4.21) 

and    0.69         5.4
>= ζ

ω
ζ

n
st                                               (4.22) 

 
We can summarize the relationships between ts and the system parameters as follows: 
1. For ξ < 0.69, the settling time is inversely proportional to ξ and ωn. A practical way of 

reducing the settling time is to increase ωn while holding ξ constant. 
2. For ξ > 0.69, the settling time is proportional to ξ and inversely proportional to ωn. Again, ts 

can be reduced by increasing ωn. 
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4.5 STABILITY OF LINEAR CONTROL SYSTEMS 
The transient response of a feedback control system is of primary interest and must be 
investigated. A stable system is defined as a system which gives a bounded output in response to 
a bounded input.  
 
The concept of stability can be illustrated by considering a circular corn placed on a horizontal 
surface, Fig. 4.9 and Fig. 4.10.  

 
Figure 4.9 The stability of a cone 

 

 
Figure 4.10 Stability in the s-plane 

 
The stability of a dynamic system is defined in a similar manner. Let u(t), y(t), and g(t) be the 
input, output, and impulse response of a linear time-invariant system, respectively. The output of 
the system is given by the convolution between the input and the system's impulse response. 
Then 

∫
∞

−=
0

)()()( τττ dgtuty                                             (4.23) 

This response is bounded (stable system) if and only if the absolute value of the impulse 
response, g(t), integrated over an infinite range, is finite. That is  

∫
∞

∞<
0

    )( ττ dg                                                    (4.24) 

Mathematically, Eq. (4.24) is satisfied when the roots of the characteristic equation, or the poles 
of G(s), are all located in the left-half s-plane.  
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A system is said to be unstable if any of the characteristic equation roots locates in the right-half 
s-plane. When the characteristic equation has simple roots on the jω-axis and none in the right-
half plane, we refer to the system as marginally stable. 
 
The following table illustrates the stability conditions of linear continuous system with reference 
to the locations of the roots of the characteristic equation. 
 

Stability Condition Roots Values 
Stable All the roots are in the left-half s-plane 

Marginally stable or marginally unstable At least one simple root, and no multiple roots on 
the jω-axis; and no roots in the right-half s-plane. 

Unstable At least one simple root in the right-half s-plane or 
at least one multiple-order root on the jω-axis. 

Table 4.1 Stability Conditions of LTI System 
 
The following examples illustrate the stability conditions of systems with reference to the poles 
of the closed-loop transfer function M(s). 
 

( )( )( )321
20)(

+++
=

sss
sM  Stable 

)ss)(s(
)s()s(M

221
120

2 ++−
+

=  Unstable due to the pole at s = 1 

)4)(2(
)1(20)( 2 ++

−
=

ss
ssM  Marginally stable or marginally unstable due 

to s = ±j2. 

)10()4(
10)( 22 ++

=
ss

sM  Unstable due to the multiple-order pole at  
s= ±j2. 

4.5.1 Methods of Determining Stability 
The discussion in the proceeding sections lead to the conclusion that the stability of linear time-
invariant system can be determined by checking on the location of the roots of the characteristic 
equation. When the system parameters are all known, the roots of the characteristic equation can 
be solved by means of a root-finding computer program. For example the M-file roots(a) of 
MATLAB. 
 
For design purposes, there will be unknown or variable parameter embedded in the characteristic 
equation, and it will be feasible to use the root-finding programs. The method outlined below is 
well known for the determination of stability of LTI system without involving root solving. 

4.5.1.1 Routh-Hurwitz Criterion 
The Routh-Hurwitz criterion represents a method of determining the location of zeros of a 
polynomial with constant real coefficients with respect to the left and right half of the s-plane, 
without actually solving for the zeros.  
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Consider that the characteristic equation of a linear time-invariant SISO system is of the form 
0)( 01

1
1 =++++= −
− asasasasF n

n
n

n L    (4.25) 
where all the coefficients are real. In order that Eq. (4.25) not has roots in the right half of  
s-plane, it is necessary and insufficient that the following conditions hold: 
 
1. All the coefficients of the equation have the same sign 
2. None of the coefficients vanishes 
 
However, these conditions are not sufficient, for it is quite possible that an equation with all its 
coefficients nonzero and with the same sign still may not have all the roots in the left half of the  
s-plane. 
 
The first step in the Routh-Hurwitz criterion is to arrange the coefficients of the Eq. (4.25) as 
follows: 
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Further rows of the schedule are then completed as follows: 
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and so on. Once The Routh’s tabulation has been completed, we investigate the signs of the 
coefficients in the first column of the tabulation.  
 
The roots of the equation are all in the left half of the s-plane if all the elements of the first 
column of the Routh’s tabulation are of the same sign. The number of changes of signs in the 
elements of the first column equals the number of roots with positive real parts or in the right-half 
s-plane. 
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Example 4.1  
Consider the equation 

( )( )( ) 064312 23 =++−=−+− ssssss  
This equation has one negative coefficient. Thus, we know without applying Routh’s test that not 
all the roots of the equation are in the left-half s-plane. In fact, from the factored form of the 
equation, we know that there are two roots in the right-half s-plane, at s = 2 and s = 3. For 
purpose of illustrating the Routh’s Tabulation, it is made as follows: 

06
05.2
64
11

0

1

2

3

s
s
s
s

−
 

Since there are two sign changes in the first column of the tabulation, the equation has two roots 
located in the right-half s-plane. 
 
Example 4.2   
Consider the equation 

010532 234 =++++ ssss  
Since this equation has no missing terms and the coefficients are all of the same sign, it satisfies 
the necessary conditions for not having roots in the right half or on the imaginary axis of the  
s-plane. However, since these conditions are necessary but not sufficient, we have to check 
Routh’s tabulation. 

0010
0043.6
0107
051
1032

0

1

2

3

4

s
s
s
s
s

−  

Since there are two changes in the first column of the tabulation, the equation has two roots in the 
right half of the s-plane.  
 

4.5.1.2 Special Cases When Routh’s Tabulation Terminates Prematurely 
Depending on the coefficients of the equation, the following difficulties may occur that prevent 
Routh’s tabulation from completing properly: 
 
1. The first element in any one row of Routh's tabulation is zero, but the others are not. 
2. The elements in one row of Routh's tabulation are all zero. 
 
In the first case we replace the zero element in the first column by an arbitrary small positive 
number ε, and then proceed with Routh’s tabulation.  
This is illustrated by the following example. 
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Example 4.3   
Consider the characteristic equation of a linear system: 

0322 234 =++++ ssss  
Since all the coefficients are nonzero and of the same sign, we need to apply the Routh-Hurwitz 
criterion. Routh’s tabulation is carried out as follows: 

0
3

    
30
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2
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4

s
s
s

 

Since the first element of the s2 row is zero, the element in the s1 row would all be infinite. To 
overcome this difficulty, we replace the zero in the s2 row by a small positive number ε and then 
proceed with the tabulation. 

0        3

0        3    
3       

0

1

2

s

s
s

ε

ε

−≅  

Since there are two sign changes in the first column of Routh’s tabulation, the equation has two 
roots in the right-half s-plane. 
 
In the second special case, when all the elements in one row of Routh’s tabulation are zeros 
before the tabulation is properly terminated, it indicates that one or more of the following 
conditions may exist: 
1. The equation has at least one pair of real roots with equal magnitude but opposite signs. 
2. The equation has one or more pairs of imaginary roots. 
3. The equation has pairs of complex-conjugate roots forming symmetry about the origin of the 

s-plane (e.g. s = -1 ± j1, s = 1 ±j1). 
 
The situation with the entire row of zeros can be remedied by using the auxiliary equation  
A(s) = 0, which is formed from the coefficients of the row just above the row of zeros in Routh’s 
tabulation. The roots of the auxiliary equation also satisfy the original equation.  
 
To continue with Routh’s tabulation when a row of zeros appears, we conduct the following 
steps: 
1. For the auxiliary equation A(s) = 0 by use of the coefficients from the row just preceding the 

row of zeros. 
2. Take the derivative of the auxiliary equation with respect to s; this gives dA(s)/ds = 0. 
3. Replace the row of zeros with the coefficients of dA(s)/ds = 0. 
4. Continue with Routh's tabulation in the usual manner. 
 
Example 4.4   
Consider the following characteristic equation of a linear control system: 

047884 2345 =+++++ sssss  
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Routh’s tabulation is 
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A(s) = 4s2 + 4 = 0 
The derivative of A(s) with respect to s is 
dA(s)/ds = 8s = 0 
 
From which the remaining portion of the Routh’s tabulation is 

4
08

0

1

s
s

 

Since there are no sign changes in the first column, the system is stable. Solving the auxiliary 
equation A(s) = 0, we get the two roots at s = j and s = -j, which are also two of the roots of the 
characteristic equation. Thus the equation has two roots on the jω-axis, and the system is 
marginally stable. These imaginary roots caused the tabulation to have an entire row of zeros in 
the s1 row. 
 
Example 4.5  
Consider that a third-order control system has the characteristic equation 

0105.11012043.3408 7323 =×+×++ ksss  
Determine the crucial value of k for stability. 
 
Routh’s tabulation is 

70
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105.1

0
3408

1012043408105.1
105.13408

1012041

×
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−
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s
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s

 

For the system to be stable, all the coefficients in the first column must have the same sign. This 
lead to the following conditions: 

0
3408

1036.410105.1 77

>
×−×

−
k

 

Therefore, the condition of k for the system to be stable is 
57.2730 << k  

If we let k = 273.57, the characteristic equation will have two roots on the jω-axis.  
To find these roots, we substitute k = 273.57 in the auxiliary equation, as follows: 
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0101036.43.3408)( 92 =×+= ssA  
which has roots at s = j1097.27 and s = -j1097.27. Thus if the system operate with k = 273.57, the 
system response will be an undamped sinusoid with a frequency of 1097.27 rad/sec. 

4.6  STEADY STATE ERROR 
One of the objectives of most control systems is that the system output response follows a 
specific reference signal accurately in the steady state. Steady-state error is the difference 
between the output and the reference in the steady state. Steady-state errors in control systems are 
almost unavoidable and generally derive from the imperfections, frictions, and the natural 
composition of the system. In the design problem, one of the objectives is to keep the steady-state 
error below a certain tolerable value. 

4.6.1 Definition of the Steady-State Error with Respect to System Configuration 
Let us refer to the closed-loop system shown in Figure 4.11, where r(t) is the input, e(t) is the 
actuating signal, and y(t) is the output.  

 
Figure 4.11 Closed-Loop Control System 

The error of the system may be defined as: 
 y(t)- signal reference)( =te                                    (4.26) 

where the reference signal is the signal that the output is to track. When the system has unity 
feedback [i.e. H(s) = 1], the error is simply 

)()()( tytrte −=  
The steady-state error is defined as 

)(1
)(lim      

)(lim)(lim

s sG
ssR

ssEtee
ssss

+
=

==

∞→

∞→∞→

                                       (4.27) 

Clearly, ess depends on the characteristics of G(s). More specifically, ess depends on the number 
of poles that G(s) has at s = 0. This number is known as the system type. Figure 4.12 shows 
steady state errors for different input functions. 
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Figure 4.12  Steady-state errors: (a) step input, (b) ramp input 

 
Now, let us investigate the effects of the types of inputs on the steady-state error. 

4.6.2 Steady-State Error of System with a Step-Function Input 
When the input r(t) to a control system with unity-feedback is a step function with magnitude R, 
then R(s) = R/s and the steady-state error is written from Eq. (4.27) as 

)(lim1)(1
lim

)(1
)(lim

0
0 sG

R
sG

R
sG

ssRe
s

ssss

→
→∞→ +

=
+

=
+

=                     (4.28) 

For convenience, we define 
)(lim

0
sGK

sp →
=  

as the step-error constant. Then Eq. (4.28) becomes 

p
ss K

Re
+

=
1

                                                     (4.29) 
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We can summarize the steady-state error due to a step-function input as follows: 

• Type 0 system:    
p

ss K
Re
+

=
1

= constant           

• Type 1 or higher system: ess = 0 

4.6.3 Steady-State Error of System with a Ramp-Function Input 
When the input to the unity-feedback control system is a ramp function with amplitude R, 

)()( tRtutr s=  

where R is a real constant, the Laplace transform of r(t) is  2)(
s
RsR =  

The steady-state error is written using Eq. (4.27) as follows: 

)(lim)(
lim

0
0 ssG

R
ssGs

Re
s

sss

→
→

=
+

=     (4.30) 

We define the ramp-error constant as )(lim
0

ssGk
sv →

=  

Then Eq. (4.30) becomes 
v

ss k
Re =                                                        (4.31) 

The following conclusions may be stated with regard to the steady-state error of a system with 
ramp input: 
• Type 0 system:                     ess = ∞ 
• Type 1 system:                     ess = R/kv = constant 
• Type 2 or higher system:      ess = 0 

4.6.4 Steady-State Error of System with a Parabolic Input 
When the input is described by the standard parabolic form 

)(
2

)(
2

tuRttr s=  

The Laplace transform of r(t) is 3)(
s
RsR =  

The steady-state error of the system is  

)(lim 2

0
sGs

Re
s

ss

→

=                                                    (4.32) 

Defining the parabolic-error constant as 
)(lim 2

0
sGsk

sa →
=                                                     (4.33) 

the steady-state error becomes 
a

ss k
Re =                                                           (4.34) 
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The following conclusions are made with regard to the steady-state error of a system with 
parabolic input: 
• Type 0 system:                     ess = ∞ 
• Type 1 system:                     ess = ∞ 
• Type 2 system:                     ess = R/ka = constant 
• Type 3 or higher system:      ess = 0 
 
Example 4.5   
Find the steady state errors of the following system 

1       H(s)          
)5.0)(5.1(

)15.3()( =
++

+
=

sss
sksG  

It is clear that this system is a type 1 system.  
The steady-state errors are: 
Step input   Step-error constant, kp = ∞   ess=R/(1+kp) = 0 
Ramp input   Ramp-error constant, kv = 4.2k  ess=R/kv = R/(4.2k) 
Parabolic input   Parabolic-error constant, ka = 0  ess = R/ka = ∞. 

4.6.5 Steady-State Error for nonunity feedback system 
For nonunity feedback control, we usually find the equivalent unity-feedback system, as shown 
in Fig. 4.13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Forming an equivalent unity feedback for nonunity feedback system 
 
We have to take into consideration that the above steps require the input and output in the same 
units. 
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The following example summarizes the concepts of steady-state error, system type, and the 
steady state errors. 
 
Example 4.6  
For the system shown in Figure 4.14, find the system type and the steady state error for the unit 
step function. Assume input and output units are the same. 

 
Figure 4.14 Nonunity feedback control system for Example 4.6 

 
The first step in solving the problem is to convert the system of Fig. 4.14 into an equivalent unity 
feedback system. Using the equivalent forward transfer function of Figure 4.13 (e) along with 

)10(
100)(
+

=
ss

sG  and 
5

1)(
+

=
s

sH , 

we find 
4005015

)5(100
)()()(1

)()( 23 −−+
+

=
−+

=
sss

s
sGsHsG

sGsGe . 

 
Thus, the system is type 0,  

and 
4
5

400
5100)(lim

0
−=

−
×

==
→

sGk esp  

 

The steady-state error is 4
1

1
−=

+
=

p
ss k

e . 

 


